600w HF Amplifier

This project is meant to demonstrate the capabilities of the MRF300 transistors as linear broadband devices in the 2-50MHz range and to be used by radio amateurs as a starting point for a medium-high power amplifier. This is also my entry to the NXP Homebrew RF Design Challenge 2019.

A600 Broadband 600W linear amplifier with MRF300 transistors

To achieve the target of 600W output while also minimizing the level of even-number harmonics, a “push-pull” configuration of two transistors is used. Luckily, the manufacturer made it easy to design the PCB layout for such a thing by offering two versions (the MRF300AN & MRF300BN) that have mirrored pinout. The common TO-247 package is used, with the source connected to the tab.

Each individual MRF300 LDMOS transistor is specified at 330W output over a 1.8-250MHz working frequency range, a maximum 28dB of gain and over 70% efficiency. The recommended supply range is 30-50Vdc. By studying the specifications, it looks like with correct broadband matching and some operational safety margin we can get close to 600W output at a voltage of around 45V across a resonably large bandwidth; the aim is to cover 1.8 to 54MHz.

Main challenges when designing this amplifier are related to achieving good input and output matching over the entire frequency range as well as maintaining high and flat gain. Good linearity and a low level of harmonic products are mandatory. As the TO-247 is not a package specifically designed for high-power RF, there are some challenges with thermal design and PCB layout as well.

Circuit Description

The circuit schematic can be seen below. For input a 4:1 transformer is used, along with a 33ohm resistor (R1) that partially dampens the reactive response and improves input matching.

A600 Broadband 600W linear amplifier with MRF300 transistors

The idle currentfor the MRF300 LDMOS transistors is set at 300mA each, with a bias gate voltage of around 2.7V. To achieve this value, a LM317HV high voltage linear regulator takes the supply voltage and adjusts it down to a value around 8-10V, which is further divided down to the exact value via individual adjustable multi-turn potentiometers.

A negative-coefficient thermistor is present in the regulator’s feedback loop so when the heatsink temperature increases the MRF300 gate bias voltage decreases slightly in order to maintain the same idle current. An external signal can cut off this voltage in order to reduce power consumption when the amplifier is not used.

The 560 ohm resistors (R2 and R3) provide negative feedback, making the amplifier more predictible in response and improving IMD performance. For a small increase in overall gain, it is worth investigating increasing their value.

Matching the output to 50ohm is where the real challenge is. For maximum efficiency across a large bandwidth, transmission line transformers (TLT) are the best option and the closest transformation ratios possible are 1:4 or 1:9. With 50V supply and a 1:4 transformer, the maximum output power that can be obtained is around 400W as the theoretical load impedance for each transistor is too high. With a 1:9 transformer higher power can be achieved but the matching becomes more critical; the supply voltage can be reduced below 50V in order to improve efficiency, but current needs to be actively monitored and kept in the safe area (below 20A in total).

For minimal losses, the coaxial cable used in the TLT has to have a characteristic impedance that is the geometric mean of the input and output impedances. As this is a 1:9 transformer and the output has to be 50ohm, the input impendance works out as 50/9 = 5.56ohm and the coax characteristic impedance is sqrt(50*5.56) = 16.67ohm. I chose TC-18 coaxial cable specifically designed for this purpose, that has 17ohm impedance and uses high quality materials so it can handle high power and temperature. 3 lengths of RG-316 in paralel can be used as well in order to achieve the 17ohm impedance, but RG-316 is harder to work with and it might be a challenge to fit it 9 times within usual ferrite cores.

The length of coaxial is best kept short in order to maintain efficiency at high frequencies, ideally below 1/10 of a wavelength at the maximum frequency. 30cm is enough for 3 turns through the popular 26xx540002 bead ferrite cores from Fair-Rite and taking the ~0.7 velocity factor into account, it stays below that.

Choosing the ferrite core for the output transformer is key to achieve the best performance. The first prototype used Fair-Rite 2667540002 ferrite beads (material 67) in an attempt to achieve the widest working range possible with best efficiency; this sacrifices performance in the lower amateur radio bands, as below 10MHz there is a significant drop in efficiency. Laird 28B1020-100 cores have been tested as well, with relatively similar performance to the material 67 Fair-Rite cores.

View full project

NXP Homebrew RF Design Challenge 2019

It's only fair to share...Tweet about this on Twitter
Share on Facebook
Share on Reddit
Share on LinkedIn